Single Replacements

"One moves in, one moves out..."

Single Replacements

•General form: A free element reacts with a compound to produce a different free element and a different compound.

 $\bullet A + BC \rightarrow B + AC$

•The products formed depend on the reactants started with.

•Reactant element \rightarrow ion •Reactant ion \rightarrow element

- •The equation must balance in mass and charge
- •In general:
 - •Metals replace metals
 - •Nonmetals replace nonmetals

More detail:

- "free" metal elements replace metal ions (or H) that start in the compound
- "free" nonmetal elements replace nonmetal ions
- •*Remember: free elements are* <u>NEUTRAL</u>

Examples...

•Zn⁰ + Cu²⁺Cl₂ \rightarrow Zn²⁺Cl₂ + Cu⁰

- •Mg⁰ + 2 H⁺Cl \rightarrow Mg²⁺Cl₂ + H₂⁰
- •2 NaCl + $F_2 \rightarrow 2$ NaF + Cl_2

When?

- •Do all free elements react with all compounds?
- Well,...no.
- •Metals will only replace metals that are *less active* than themselves.

When?

- •We use an <u>activity series</u> (reduction potentials sheet) to determine which metals can replace which metals
- •Metals listed as products are <u>more</u> <u>active</u> the <u>lower</u> they are on the reduction potentials sheet

$\mathrm{Sn}^{4+} + 2 e^{-}$	\rightarrow	Sn ²⁺	0.15	
$S(s) + 2 H^{+} + 2 e^{-}$	\rightarrow	$H_2S(g)$	0.14	
$2 H^{+} + 2 e^{-}$	\rightarrow	$H_2(g)$	0.00	
$Pb^{2+} + 2e^{-}$	\rightarrow	Pb(s)	-0.13	
$\mathrm{Sn}^{2+} + 2 e^{-}$	\rightarrow	Sn(s)	-0.14	
$Ni^{2+} + 2e^{-}$	\rightarrow	Ni(s)	-0.25	
$Co^{2+} + 2e^{-}$	\rightarrow	Co(s)	-0.28	I ess active metals
$Cd^{2+} + 2e^{-}$	\rightarrow	Cd(s)	-0.40	
$Cr^{3+} + e^{-}$	\rightarrow	Cr ²⁺	-0.41	
$Fe^{2+} + 2e^{-}$	\rightarrow	Fe(s)	-0.44	
$Cr^{3+} + 3e^{-}$	\rightarrow	Cr(s)	-0.74	
$Zn^{2+} + 2e^{-}$	\rightarrow	Zn(s)	-0.76	
$2 H_2 O(l) + 2 e^{-l}$	\rightarrow	$H_2(g) + 2 OH^-$	-0.83	
$Mn^{2+} + 2 e^{-}$	\rightarrow	Mn(s)	-1.18	
$Al^{3+} + 3e^{-}$	\rightarrow	Al(s)	-1.66	
$Be^{2+} + 2e^{-}$	\rightarrow	Be(s)	-1.70	
$Mg^{2+} + 2 e^{-}$	\rightarrow	Mg(s)	-2.37	
$Na^+ + e^-$	\rightarrow	Na(s)	-2.71	
$Ca^{2+} + 2e^{-}$	\rightarrow	Ca(s)	-2.87	
$Sr^{2+} + 2e^{-}$	\rightarrow	Sr(s)	-2.89	
$Ba^{2+} + 2e^{-}$	\rightarrow	Ba(s)	-2.90	Most active metals
$Rb^+ + e^-$	\rightarrow	Rb(s)	-2.92	
$K^{+} + e^{-}$	\rightarrow	K(s)	-2.92	- Can replace the
$Cs^+ + e^-$	\rightarrow	Cs(s)	-2.92	
$Li^+ + e^-$	\rightarrow	Li(s)	-3.05	metals above them

from compounds

$\mathrm{Sn}^{4+} + 2 e^{-}$	\rightarrow	Sn^{2+}	0.15
$S(s) + 2 H^{+} + 2 e^{-}$	\rightarrow	$H_2S(g)$	0.14
$2 \text{ H}^+ + 2 e^-$	\rightarrow	$H_2(g)$	0.00
$Pb^{2+} + 2e^{-}$	\rightarrow	Pb(s)	-0.13
$\mathrm{Sn}^{2+} + 2 e^{-}$	\rightarrow	Sn(s)	-0.14
$Ni^{2+} + 2e^{-}$	\rightarrow	Ni(s)	0.25
$Co^{2+} + 2e^{-}$	\rightarrow	Co(s)	-0.28
$Cd^{2+} + 2e^{-}$	\rightarrow	Cd(s)	-0.40
$Cr^{3+} + e^{-}$	\rightarrow	Cr ²⁺	-0.41
$Fe^{2+} + 2e^{-}$	\rightarrow	Fe(s)	-0.44
$Cr^{3+} + 3e^{-}$	\rightarrow	Cr(s)	-0.74
$Zn^{2+} + 2e^{-}$	\rightarrow	Zn(s)	-0.76
$2 H_2 O(l) + 2 e^{-l}$	\rightarrow	$\mathrm{H}_{2}(g) + 2 \mathrm{OH}^{-}$	-0.83
$Mn^{2+} + 2 e^{-}$	\rightarrow	Mn(s)	-1.18
$Al^{3+} + 3e^{-}$	\rightarrow	Al(s)	-1.66
$Be^{2+} + 2e^{-}$	\rightarrow	Be(s)	-1.70
 $Mg^{2+} + 2 e^{-}$	\rightarrow	Mg(s)	-2.37
$Na^+ + e^-$	\rightarrow	Na(s) 🔨	-2.71
$Ca^{2+} + 2e^{-}$	\rightarrow	Ca(s)	-2.87
$\mathrm{Sr}^{2+} + 2 e^{-}$	\rightarrow	Sr(s)	-2.89
$Ba^{2+} + 2e^{-}$	\rightarrow	Ba(s)	-2.90
$Rb^+ + e^-$	\rightarrow	Rb(s)	-2.92
$K^{+} + e^{-}$	\rightarrow	K(s)	-2.92
$Cs^+ + e^-$	\rightarrow	Cs(s)	-2.92
 $\mathrm{Li}^+ + e^-$	\rightarrow	Li(s)	-3.05

Metals from here to the bottom of the page react with acids (replace the H+)

Most active metals - From here down Can replace the H from water!

When?

Zinc metal, for example, is more active than copper...

So the zinc metal replaces the copper ions from the aqueous compound... And the copper becomes neutral atoms.

How?

How does this actually happen? If one metal is losing electrons... ...and another is gaining electrons... ... it is an **oxidation-reduction** process Oxidation = losing electronsReduction = gaining electrons

•The Zinc metal appears to dissolve...

... it is becoming zinc ions and dissolving into the water...

 $Zn^0 \rightarrow Zn^{2+} + 2 e^-$ oxidation •As the copper ions leave solution, the distinctive blue color of an aqueous copper solution fades away

 $Cu^{2+} + 2 e^{-} \rightarrow Cu^{0}$ reduction